Advancement of Systems Designs and Key Engineering Technologies for Materials Based Hydrogen Storage

United Technologies Research Center

H2
DOE Hydrogen Program
Annual Merit Review
Washington, DC
June 8, 2010

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

- **Timeline**
 - Start: February 2009
 - End Phase 1: July 2011
 - End Phase 2: July 2013
 - End Phase 3 / Project: July 2014
 - Percent complete: 18.0% (spending)

- **Budget**
 - $6.86M Total Program
 - $5.32M DOE
 - $1.55M (22.5%) UTRC
 - FY09: $350k DOE
 - FY10: $870k DOE

- **Barriers**
 - A – J
 - A. System Weight & Volume
 - E. Charging / Discharging Rates
 - J. Thermal Management

- **Targets**
 - All

- **HSECoE Partners**
Objectives

- Design of materials based vehicular hydrogen storage systems that will allow for a driving range of greater than 300 miles
- H\textsubscript{2} storage system focus:
 - Metal hydride
 - Chemical hydride
 - H\textsubscript{2} cryo-sorption materials

Target examples:

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Units</th>
<th>2010</th>
<th>2015</th>
<th>Ultimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Gravimetric Capacity</td>
<td>g H\textsubscript{2} /kg system</td>
<td>45</td>
<td>55</td>
<td>75</td>
</tr>
<tr>
<td>System Volumetric Capacity</td>
<td>g H\textsubscript{2} /L system</td>
<td>28</td>
<td>40</td>
<td>70</td>
</tr>
<tr>
<td>System fill time (for 5 kg H\textsubscript{2})</td>
<td>minutes</td>
<td>4.2</td>
<td>3.3</td>
<td>2.5</td>
</tr>
<tr>
<td>Fuel Purity</td>
<td>% H\textsubscript{2}</td>
<td>SAE J2719 guideline (99.97% dry basis)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Leverage in-house expertise in various engineering disciplines and prior experience with metal hydride system prototyping to advance materials based H₂ storage for automotive applications.

- Provide a system model for each material sub-class (metal hydrides, adsorption, chemical storage) which shows:
 - 4 of the DOE 2010 system storage targets are fully met
 - Status of the remaining targets must be at least 40% of the target or higher
Center Structure – Roles & Collaborations

Hydrogen Storage Engineering Center of Excellence

- D. Anton, SRNL
- T. Motyka, SRNL

Materials Operating Requirements
- D. Herling, PNNL
 - Materials Centers of Excellence Collaboration – SRNL, LANL, NREL
 - Reactivity & Compatibility – UTRC
 - Adsorption Properties – UQTR
 - Metal Hydride Properties – SRNL
 - Chemical Hydride Properties – LANL
 - Media Structure - GM

Transport Phenomena
- B. Hardy, SRNL
 - Bulk Materials Handling – PNNL
 - Mass Transport – SRNL
 - Thermal Transport – SRNL

Enabling Technologies
- J. Reiter, JPL
 - Thermal Insulation – JPL
 - Hydrogen Purity – UTRC
 - Sensors – LANL
 - Thermal Devices - OSU
 - Pressure Vessels - PNNL

Performance Analysis
- M. Thornton, NREL
 - Vehicle Requirements – NREL
 - Tank-to-Wheels Analysis – NREL
 - Forecourt Requirements - UTRC
 - Manufacturing & Cost Analysis - PNNL

Integrated Power Plant / Storage System Modeling
- D. Mosher, UTRC
 - Off-Board Rechargeable - PNNL
 - On-Board Rechargeable – GM
 - Power Plant – Ford

Subscale Prototype Construction, Testing & Evaluation
- T. Semelsberger, LANL
 - Risk Assessment & Mitigation – UTRC
 - System Design Concepts and Integration - LANL
 - Design Optimization & Subscale Systems – LANL, SRNL, UQTR
 - Fabricate Subscale Systems Components – SRNL, LANL
 - Assemble & Evaluate subscale Systems – LANL, JPL, UQTR

Leading / Project Tasks

Additional Project Tasks

Supporting
Engineered Compaction

- Objective: Improve volumetric capacity and thermal conductivity through powder compaction
- Coordinated through GM

Press inside glovebox

Pellets for thermal Conductivity measurements

Thermal conductivity analyzer

Density increased by 63% (39% reduction in volume)

Density [g/cm³]

Pressure [kpsi]

7X improvement of thermal conductivity

Thermal conductivity [W/m/K]

Density [g/cm³]
Properties of Compacted Metal Hydride

- **H₂ Absorption (120°C, 110 bar)**

 ![H₂ Absorption Graph](image)

 NaAlH₄ +4% TiCl₃

 Time [hrs]

 H₂ Absorption [wt. %]

 - 0.0%
 - 0.5%
 - 1.0%
 - 1.5%
 - 2.0%
 - 2.5%
 - 3.0%
 - 3.5%
 - 4.0%
 - 4.5%

 Pellet

 Powder

 Comparable H₂ absorption and desorption rate before and after compaction

- **Biaxial flexure screening test for compressed pellets**

 ![Biaxial Flexure Test](image)

 Integrating pellet reinforcement and thermal conductivity enhancement in compacted material

 Reinforced NaAlH₄

 Probability Plot for Strength[kpsi]

 Weibull - 95% CI

 Complete Data - LSXY Estimates

 Table of Statistics
 - **Shape**: 5.12553
 - **Scale**: 1.54030
 - **Mean**: 1.41628
 - **StDev**: 0.31735
 - **Median**: 1.43400
 - **IQR**: 0.433734
 - **Failure**: 15
 - **Censor**: 0
 - **AD***: 0.954
 - **Correlation**: 0.993
Objective: Optimization of hydrogen storage system heat exchanger for fast refueling time

Approach:
- Co-developed and validated COMSOL™ model of NaAlH₄ bed with SRNL
- Incorporated improved material properties after compaction (ρ, k)
- Performed parametric study to optimize heat exchanger design for fast refueling time
- Developed lumped parameter model for System Level Modeling
Technical Accomplishments and Progress

HX Design for Fast Refueling Time

- Different bed designs are optimal for specific refueling times

NaAlH₄ is a good model material for designing engineering tools but can not achieve gravimetric capacity targets at fast refueling times.
H₂ Purity

- **Objective:** Develop system methods to improve discharged hydrogen purity / quality for acceptable PEM fuel cell durability

Impurities of Concern:

- **NREL H₂ Forecourt**

```
<table>
<thead>
<tr>
<th>Storage material</th>
<th>Impurity</th>
<th>SAE guideline</th>
<th>HSECoE Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia</td>
<td>Borazine</td>
<td>???</td>
<td>0.4-3.0%*</td>
</tr>
<tr>
<td>Borane</td>
<td>Diborane</td>
<td>???</td>
<td>1-5 ppm</td>
</tr>
<tr>
<td>Metal Amides</td>
<td>Ammonia</td>
<td>0.1 ppm</td>
<td>20-200 ppm</td>
</tr>
<tr>
<td></td>
<td>Ammonia</td>
<td>0.1 ppm</td>
<td>200-800 ppm</td>
</tr>
</tbody>
</table>
```

*LANL: 0.01-0.08 mol Borazine/ mole of AB reacted

Initial focus on Ammonia
Technical Accomplishments and Progress
Preliminary Purification System Comparison

<table>
<thead>
<tr>
<th>Factor</th>
<th>Conventional Palladium Membrane</th>
<th>Regenerable Physical Adsorption</th>
<th>Chemical Adsorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>Heavy</td>
<td>Heavy(^1)</td>
<td>Light</td>
</tr>
<tr>
<td>Volume</td>
<td>Big</td>
<td>Big</td>
<td>Small</td>
</tr>
<tr>
<td>Cost</td>
<td>Expensive</td>
<td>Affordable</td>
<td>Affordable</td>
</tr>
<tr>
<td>(H_2) loss</td>
<td>2-5%</td>
<td>High(^1)</td>
<td>Low</td>
</tr>
<tr>
<td>Pressure</td>
<td>(>50) psig</td>
<td>High pressure preferred</td>
<td>Atmospheric or high pressure</td>
</tr>
<tr>
<td>Temperature</td>
<td>300-400ºC</td>
<td>RT</td>
<td>RT(<T<150ºC</td>
</tr>
<tr>
<td>Purity</td>
<td>99.99999999%</td>
<td>99.97%</td>
<td>99.97%</td>
</tr>
<tr>
<td>Life expectancy</td>
<td>(>5) years</td>
<td>(>2) years</td>
<td>3 month replacement</td>
</tr>
</tbody>
</table>

\(^1\) Assuming on-board regeneration

Chemical adsorption cartridge selected for Ammonia
Adsortion System Development

Technical Accomplishments and Progress

Process Flow Diagram

Test apparatus

\[\text{NH}_3 \text{ adsorbent} \]
- Mesh size: 20x30 mesh (0.84x0.60 mm)
- Tap Density: 0.673 g/cm³
- BET surface area: 673 m²/g
- Pore volume: 0.338 cm³/g
- Average Pore Diameter (4V/A by BET): 20.1 Å

NH\(_3\) breakthrough curves

Flow rate dependence NH\(_3\) breakthrough time

Cartridge weight for 3-month replacement interval

Adsorbent based H\(_2\) purification cartridge for NH\(_3\) appears viable
Integrated Framework for Vehicle Simulation

- **Objective:** Evaluate combined power plant / storage system configurations to determine hydrogen storage system requirements and predict overall performance.

- **Progress:**
 - Framework structure developed and implemented in Simulink™
 - Different storage system types coexist within same framework
 - Results generated for comparing storage systems against DOE targets on a common basis

Technical Accomplishments and Progress

System Results for comparison with DOE targets

- **H₂ Storage Systems**
 - UTRC NaAlH₄
 - GM NaAlH₄
 - GM H₂ cryo Adsorbent (AX-21)
 - PNNL Chemical Hydride (solid AB)

Vehicle level model (NREL)

- **Fuel Cell System (Ford)**
 - Vehicle
 - Fuel Cell
 - Storage systems

UTRC leading IPP/SSM technical area and providing support to all partners for implementing their contributions.
NaAlH₄ system example:

- Power demand curves from HSSIM (NREL)
- Lumped heat transfer model parameters from COMSOL™ model of NaAlH₄ bed
- Single “cold start” from 20°C:
 - H₂ stored in free volume is burned to raise temperature
- Drive cycle repeats indefinitely
 - Drive cycles were not designed for vehicles with materials based H₂ storage systems
- Minimum delivery pressure: \(P_{\text{min}} = 3 \text{ bar} \)
- Results show drive cycle is tracked correctly until after 5 kg H₂ have been delivered to the fuel cell.
- More details in presentation by GM

Performance comparison of all three hydrogen storage systems on a common basis
<table>
<thead>
<tr>
<th>Task</th>
<th>FY10</th>
<th>FY11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improve properties through compaction with reinforcing material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantify impact of pressure gradients inside consolidated metal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hydride powder on H(_2) absorption and desorption kinetics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluate small test article with structured media</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluate alternative reversible metal hydride materials in common</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(_2) storage framework with current engineering tools</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improve capacity of on-board H(_2) purification cartridge for ammonia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Develop and assess methods for removing boron containing species</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualitative risk assessments of novel systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improve definition of Balance of Plant (BOP) components in system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>model and establish a common bill of materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implement initial cost model library for storage systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identify technology gaps and prioritize concepts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantify hydrogen storage system performance against DOE targets for Go/No-Go decision on April 30, 2011</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary

Relevance: Design of materials based vehicular hydrogen storage systems that will allow for a driving range of greater than 300 miles

Approach: Leverage in-house expertise in various engineering disciplines and prior experience with metal hydride system prototyping to advance materials based H₂ storage for automotive applications

Technical Accomplishments and Progress:

- Developed method that improved volumetric capacity and thermal conductivity through compaction
- NaAlH₄ is a good model materials but can not achieve gravimetric capacity targets at fast refueling times
- Hydrogen purification cartridge for adsorbing NH₃ appears viable
- Established Simulink framework that enables performance comparison of all three hydrogen storage materials against DOE targets on a common basis

Collaboration: Active collaboration with all partners in center, for instance between Ford, GM, PNNL and NREL on system level modeling

Future Work: Work towards milestones on quad charts of each of the technical areas and technical teams and towards Go/No-Go decision on April 30, 2011
Acknowledgements

Acknowledgement: This material is based upon work supported by the U.S. Department of Energy under Contract No. DE-FC36-09GO19006.

Disclaimer: This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government of any agency thereof.